You are welcome to visit our invited session on “Label Free Live Cell Monitoring” during the 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society in Milan.

IEEE EMBC 2015 Session “Label Free Live Cell Monitoring”:

Martin Brischwein, Technische Universität München:
Sensor Based Microphysiometry
The capability of continuously monitoring cells and tissues in real-time for hours or days supports the value of a sensor-based microphysiometric approach. While there are widespread applications now for in-vitro settings, the use for smart, implanted devices is just beginning. The spectrum of analysed functional parameters comprises cellular morphological dynamics, metabolic activity and patterns of electric activity. An outline of a study on human tumor tissue samples gives an example of the potential benefits and challenges of in-vitro microphysiometry.

Joachim Wegener, Universität Regensburg:
Impedance Analysis of Different Cell Monolayers Grown on Gold-Film Electrodes
Impedance analysis of mammalian cells grown on planar film electrodes provides a label-free, non-invasive and unbiased observation of cell-based assays addressing the biological response to drugs, toxins or stressors in general. Whereas the time course of the measured impedance at one particular frequency has been used a lot for quantitative monitoring, in-depth analysis of the frequency-dependent impedance spectra is rarely performed. This study summarizes and validates the existing model for spectral analysis by applying it to eight different cell types from different mammalian tissues. Model parameters correctly predict the functional and/or structural properties of the individual cells under study.

Frank Alexander, cellasys GmbH:
Online, Label-Free Monitoring of Organ-On-A-Chip Models: The Case for Microphysiometry
Primarily composed of cells on a porous membrane embedded in microfluidic channels, organ-on-a-Chip (OOC) models are coming into the spotlight as an innovative, new approach to in vitro modeling. However, more work is required to understand the impact OOCs have on cellular function including basal metabolism, barrier resistance and oxygen consumption. Electrochemical sensor-based cellular microphysiometry provides a noninvasive, real-time methodology for monitoring these attribute and can be applied to develop robust, automated assays for organ toxicology. To date, few OOCs have been studied with integrated electrochemical sensors. In this presentation, we define organ-on-a-chip systems, outline which have been studied with integrated sensors, and present a novel method to study cells cultured directly on a porous membrane.

Cornelia Pfister, HP Medizintechnik GmbH:
Dynamic Monitoring of Cellular Metabolic Activity in Combination with Live Cell Imaging
We present an automated analysis of the cellular dynamic metabolic activity in combination with live cell imaging, an essential factor for understanding the fundamental cellular physiological responses. Therefore, we utilized the Intelligent Microplate Reader, a new analysis platform for marker-free cell-based assays in real-time. To demonstrate the benefit of the platform, we analyzed the relationship between various dynamic cell parameters (extracellular acidification, oxygen uptake, cell morphology, cell density and cell migration) of L929, a mouse fibroblast cell line, under the influence of sodium dodecyl sulfate. The dynamic kinetics of the monitored parameters are consistent and revealing much information about the transactions occurring in the cells.

Lazuardi Umar, University of Riau:
Application of Algae-Biosensor for Environmental Monitoring
Environmental problems including water and air pollution, over fertilization, insufficient wastewater treatment and even ecological disaster are receiving greater attention in the technical and scientific area. In this paper, a method for water quality monitoring using living green algae (Chlorella Kessleri) with the help of the intelligent mobile lab (IMOLA) is presented. This measurement used two IMOLA systems for measurement and reference simultaneously to verify changes due to pollution inside the measurement system. The IMOLA includes light emitting diodes to stimulate photosynthesis of the living algae immobilized on a biochip containing a dissolved oxygen microsensor. A fluid system is used to transport algae culture medium in a stop and go mode; 600s ON, 300s OFF, while the oxygen concentration of the water probe is measured. When the pump stops, the increase in dissolved oxygen concentration due to photosynthesis is detected. In case of a pollutant being transported toward the algae, this can be detected by monitoring the photosynthetic activity. Monitoring pollution is shown by adding emulsion of 0,5mL of Indonesian crude palm oil and 10mL algae medium to the water probe in the biosensor.

Johannes Clauss, Technische Universität München:
In-Vivo Cell and Tissue Monitoring with Active Implants
Active implant systems are becoming increasingly important in modern medicine. We describe the development of an implantable system for the monitoring of dissolved oxygen. Tissue oxygen saturation plays a leading role in many pathophysiological processes in the human body such as the growth of malignant tumors or the viability of transplanted organs. The implant allows monitoring the tissue oxygenation in vivo with a wireless interface to an external device. An improved self-calibration technique is described to minimize sensor drift with electrochemical sensors in vivo for a better long term stability of the implant system. The sensor was coated with a hydrogel membrane to avoid convection artifacts during calibration procedure.

0 replies

Leave a Reply

Want to join the discussion?
Feel free to contribute!

Leave a Reply

Your email address will not be published. Required fields are marked *