cellasys will present two posters at the “9th World Congress on Alternatives and Animal Use in the Life Sciences“:

1. Serial Linkage of BioChips toward an organ-on-chip approach

2. Using chlorella kessleri for monitoring of water quality

Serial Linkage of BioChips toward an organ-on-chip approach
The development of drugs is a costly and time consuming process. Although high throughput methods based on cell cultures are available, they only give a hint on the real effect of a future drug. Traditional two dimensional cell cultures are not able to reproduce/emulate the complex interactions of different types of tissue like it exists in the human body. Such interactions include the absorption, distribution, metabolism and elimination (ADME) of a drug. Recently new approaches reforming the cell culture techniques were published. Most of them are based on several microchambers that are cultivated with different cells. Microfluidic channels are used to link these chambers and to ensure exchange of metabolites. With such devices e.g. primary cells can be cultivated for a longer time period and with a smaller loss of functionality than in former single-type 2D cell-cultures. A lable-free long term monitoring of organ-on-chip systems would affirm the benefits of such systems. Electrochemical sensors are well suited for this task, but need to be careful integrated. As proof-of-concept we serially linked two electrochemical cell-monitoring systems (IMOLA-IVD, cellasys GmbH) and showed that the exchange of metabolites can be monitored without any crosstalk in a label-free, long-term and multi-parametric manner.

Using chlorella kessleri for monitoring of water quality
Polution of surface waters is an increasing problem in the modern world. Causes are various like over-fertilization, insufficient capabilities or lack of wastewater treatment plants, littering, ecological disaster or eaven chemical and biological warfare. In the presented work the algae chlorella kessleri was used as an unspecific signal transducer for water quality. The algae was immoilized on a BioChip with a cellulose membrane, supplied with algae culture broth and monitored using the IMOLA-IVD technology which was developed in cooperation with the Heinz Nixdorf Lehrstuhl für Medizinische Elektronik at Technische Universität München. Here, the oxygen production due to photosynthetic stimulation of the algae with light emitting diodes and the extracellular acidification is monitored. If the water quality changes, the photosynthetic activity of the algae is also altered and that can be detected with the set-up. In a proof of principle study, probes from Indonesian palm plants were investigated. The technology showed that it can be used as an unspecific early warning system for water quality monitoring. The technology and first results using probes from Indonesian palm plants are presented. Future work will be on the transition from the laboratory to a real world scenario.

0 replies

Leave a Reply

Want to join the discussion?
Feel free to contribute!

Leave a Reply

Your email address will not be published. Required fields are marked *